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AN IMAGE TRANSFORM CODING ALGORITHM BASED ON A GENERALIZED CORRELATION MODEL‘

Introduction

Transform coding is an efficient technique for compressing coded image arrays from a high number to a
low number of bits per pixel because the transform concentrates the image energy in the lower index trans-
form coefficients. The developed algorithm discussed in this paper is within the framework of statistical,
adaptive tranaform coding in that the transform coefficients are quantized with a quantizer and bit allocation
based on the transform coefficient variances. The term adaptive transform coding is applicable because
the transform coefficient variances for each block are estimated from the transform coefficients of that
block. Recomputation of the transform coefficient variance estimates for each block allows these variance
estimates to adapt to the statistical variations between blocks. This latter property is also found in the re-
cursive estimation of the transform coefficient variances as prurosed by Tescher and Cox. (1) Adaptive
image coding techniques have been recently surveyed by Habibi.(2) The algorithm developed in this paper
is new in the choice of model for the transform coefficient variances.

Statistical Model Theory

An image array is divided into NXN matrices called blocks. For the purpose of generating second-order
statistics, the fundamental assumption made in this paper is that each block is formed by an outer product
matrix multiplication on a zero mean stationary white matrix:

X = HNGY ; Trace (HTH) = Trace (GTG) = N (1

In Eq. (1), X is the NXN matrix of image data for one block, H and G are NXN scaled matrices, and W is
an NxN stationary white matrix.

» »
Elw“(k,i)] = o ;  Elw(k,i)w(r,s)] = 0 for k,i = r,s (2)
In Eq. (2), w(k,i) is the k,i element of W and E[:] is the statistical expectation operator.

The model proposed here is an extension of the model typically assumed for generating the second-order
statistics of random vectors, i.e., that the random vector is formed by a matrix multiplication on a sta-
tionary white vector. The best known special case that fits the model [Eq. (1)] is that X is a block from a
two-dimensional exponentially correlated image.

It follows from Eq. (2) that, for an arbitrary NXN matrix Q,

ElwTaw] - elwawT] - (Trace Q1 (3)

where [ is the NxN identity matrix. It follows from Eqgs. (1) and (3) that

o* Trace (E[XXT/NZI) (4)

ElxxT/ne®l - unT 5 elxTx/no?) = aaT (5)

*Thh work reflects research conducted under U.S. Air Force Space and Missile Systems Organization
(SAMSO) Contract No. FO4701-77-C-0078.
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The matrix E[XXT/Noz] reflects the row correlations in X, and the matrix E(X ‘X/Nol] reflects the column
correlations in X.

The Transform Statistics

The transform of the matrix X is the NXN matrix Z:

T -1 T -1 T

Z=zU'XY : D s Y RS R (6)

In Eq. (6), U and V are arbitrary unitary matrices and it follows that, given Z, then X = uzvT. Subse-
quently, we investigate the second-order statistics of the transform coefficients z(n, ). From (6)

z(n, 1) = UTxv, (7)
where y is the nth column of U and is the D column of V. From Egs. (1), (3), and (7), it follows that
Ty,)

Elz(n, Oz(r, 8)] = % (uTHH Ty )(vaGTy, (8)

Substitution of Eq. (5) into Eq. (8) gives
Elz(n, 0z, )] = o?(UTElxxT /no?lu (v Te(xTx/No? Iy ) 9)

What is learned from Eqs. (4) and (9) is that the two matrices E[XXT] and E[XTX] constitute sufficient sta-
txsh_fs for t.he determination of the second-order statistics of the z n. {) transform coefficients. Moreover,

f UTE[xXT]U is the unitary transformation that diagonalizes Elxx } and if V E[XTX]V is the unitary trans-
i formation that diagonalizes E[XTX], then the transform coefficients are uncorrelated with E[z(n. t)z(r, s)]=0
for (n, ) = (r,s). In this case, Z = UTXV is the Karhunen-Loeve or Hotelling transformation for X.

From Eq. (9) it follows that the variance of the (n, f) transform coefficient is

; é & 2 =
O g = Elzm, 0] = o™\ 8, (10)
T Tz ! KT ireT 2
\, QU EIXX"/No“lu, : 8,8V, E[X"X/N"IV, (11)

What is learned from Egq. l,fO) is tha.t the transform coefficient variances are product separable in row and
column indexes. Since XX and XIX are positive semidefinite matrices and since U and V are unitary, it
follows that

N N
20 n%xﬂ:u ;8,20 EB‘:N (12)

From Eqgs. (10) and (12), az. xn, and El can be expressed directly in terms of the E[zz(n. l)]:

El $ 22 (n, O1/N° (13)
n=1
N N
- ZElPm 0ot i sy = 3 Bl 01/ (14)
= n=

The results of applying the rate distortion theory to random vectors(3) carry through analogously to ran-
dom matrices modeled by Eq. (1). If the elements of W are Gaussian, then the least number of bits per ele-
ment B required to block code X with mean square distortion D per element is

B = 0.5 log,(c*/D) - (0. S/N)[logz(oem;‘) + 1ogz(DetR;_‘)] (15)

R, @ ElxxT/No%] and R, 4 ElxTx/No?] (16)

In Eq. (15), D/c? is assumed to be less than the product of the smallest eigenvalue of Rj times the smallest
eigenvalue of R with Ry and R restricted to be positive definite. The proof is discussed below with b(k, i),
B(k,i), z(n, t) and 2(n, f) denoting the elements of X, X, Z and 2 respectively and %= uzvT,
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Rate Distortion Results

The block mean square distortion is defined as D = L E((b(k, i) - b(k,in‘:]. Since U and V are unitary,
it follows that D = XXE[(z(n, 1) - Z(n, 1))*). Each transform coefficient z(n, f) is coded with By, ¢ bits and de-
coded as Z(n, f) with mean square distortion Dp, ¢ = El(z(n, 1) - #(n, 1))*]. Thus, Dy = XXDp, . We next as -
sume that the elements of W in the model given in (1) are Gaussian, and it follows that the z(n, {) are
Gaussian. The minimum bit allocation By, ¢ to achieve the mean square distortion Dy, ¢ = 7%, ¢ for Gaussian
z(n, ) is By ¢ = 0.5 logz(aﬁ. t/Dn, t). The total bit allocation for the block is BT = X¥Bp, ¢ and it follows
that

- 2 %,
= XXlog,o ~ 0.5ZZ
BT = 0. 'r._....lop,: n, 0.522 lug:Dn. ¢

(17
To minimize B for,a given DT, we choose Dy, ¢ to maximize XXlog Dy, ¢. The solution is Dn, ¢ = DT/N“’
provided Dp/N¢ = o5 4 forall indexes. Considering the case where this last inequality is satisfied, then

2
Bp = 0.55Xlog 00

>
- O.SN'logz‘DT/NZ) (18)
Denoting D = D'r/Nz as the normalized distortion, B = B/N? as the normalized bit allocation, and sub-
ol 7

stituting 0§ o2\, 8, it follows that

> N N
B = 0.5 log,(c"/D) + (O.S/N)[nz;‘logz\“ + ;tl()ngl] (19)

From (11) and (16) the \,, are the main diagonal terms of UTR|U and the 8¢ are the main diagonal terms of
VTR,V. The term B is minimized when I\, and Ilf¢, which are the respective products of these main
diagonals, are minimized. This occurs when Z = UTXV is the Karhunen-loeve Transform for X. Then the
\p are the eigenvalues of Ry and the 8y are the eigenvalues of R,. It follows that logp\p = loga(Il\,) =
log2(DetRy) and similarly for R,. Substitution into (19) gives

B = 0.5 logz(c"‘/m +(0.5/N)llog ,(DetR ) + log ,(DetR )] (20)

Equation (16) follows since DetRit = (DetRl)'l and similarly for R,. Also, the restriction on D is
D/s2 < AL 8¢ for all n, £,

Description of the Algorithm

The basic structure of statistical transform coding algorithms is given in Fig. 1. The original image is
a large dimensional array whose elements are each coded using B, bits, and the images in our study have
elements that take on integer values from 0 to 2P0 . |. The first step is to divide the image into NxN blocks
with the choice in this study of N=16. The 16 X16 block size is large enough to take advantage of the com-
pression of energy into the lower index transform coefficients and small enough to permit consideration of
statistical variations over the image. Next, the two-dimensional discrete cosine transform operation U = V,
Z - UTXU is performed. The elements u(n, {) of the N XN unitary matrix U are

u(n, 1) = 1/JN— H n=1,2 + « «+N (1)
u("")=~x’2ﬁ°°’[&‘”—;§:&iﬂ] ; 7:;:§: e (22)

The cosine transform is a popular choice because of the closeness to the Karhunen-Loeve Transform for
exponentially correlated images.(4) In this study po fast Fourier Transform-type algorithm is used. The
cosine transform Z = UTXU and the inverse X = UZUT are computed as written - by matrix multiplication.

Unlike the assumption made in the theoretical discussion, the real image blocks X do not have zero mean.
For the two-dimensional cosine transform, only the z(1, 1) transform coefficient is biased. Using (21)
N N
z(1,1) = 3 3 bk, i)/N (23)
i=1 k=1
B
where b(l&i is an element of X. Since each b(k, i) is an integer on Oto 2 ° - 1, then Nz(1, 1) is an integer
on 0 to N®(2P0 - 1) that requires less than 2 logN + B, bits to code without error. In this study, z(1,1)is
decoded exactly (i.e., Z(1,1) = z(1, 1)) with the required number of bits included in the bit count,

In the next step, the 04, X\, and B{ transform statistics are estimated for each block using that block's
transform coefficients to replace E[zz(n. 1)) in (13) and (14):

7
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SR e J
(@9” = 3 ¥ a"(n, HIN® (24)
t-In-1
P L2 "2 N o, .2 ;
A '}:‘l (n OIN(@@” 1 B Zl’.h(n'”/N('. ) (25)
n

» » 3
In Eqs. (24) and (25), (o7, \'n. and 5,’ denote the estimates of 7, \ , and ?l. Also, the actual 27(1, 1) is
replaced by zero. B

The estunates of the block transform statistics_must be coded since they are required for obtaining the

decoded transform coefficients. Let 8%, A+ and f¢ denote the quantized (a1, A\, and #% respectively. Then
the transform coefficient quantized standard deviation is

" -2¢ = 1172 ™
5. [ \nFl] Sl

Each z(n, £) with the exception of «(1, 1) is normalized by 3, ¢ to obtain the normalized transform coefficient

X(n, &) 1.(:\.“/3“ (27)

R

. P : s g A 5 - : 5) ~ :
The normalized transform coefficient is then quantized using a B, ¢ bit unity variance M.lx-l.loyd( ) Gaussian
quantizer. The choice of hn.l is based upon 5, as discussed later.

Decoding the bit word for the quantized normalized transform coefficient vields X(n, {), which is multiplied
by ’n.! to obtain the decoded transform coefficient

- 2 o] Al
Z(n, 0 2. lx(n. i) (28)

The same 3, ¢ must be used in (27) and (28), which is why (:-')". \’, and 87 must be quantized and included
in the bit stream. Finall{. the matrix of decoded transform coefficients 2 2(n, 0] is inverted to obtain
the decoded image block Bk, i)]:

X=UzUu (29)

Coding of the Transform Statistics

Since 3, ¢is used to pormalize z(n, f), accurate quantizing of the transform statistics means that (3/07),
N/ /5 and (378912 are near 1. It follows that the transform statistics should be logarithmically
quantized. For (5), the output choices used are 1, C, C%. . . CK-1 where K is the number of choices.
The number of bits required to code (2) is log K and is counted as overhead. For (o) between the
smallest and largest output choices,

»
sl lNTllug:(O'\h/lng_)C]

(8)" = ¢ (30)

where INT| ] is used here as the closest integer to the argument.

The primary contribution to overhead is the coding of the 2N statistical coefficients, \f ¢+ - \y and
8« .« 8N. If we allocated B bits to each coefficient, then the overhead is 2NB/N< :l\}N bits per pixel.
The coding of \j for N-106 is as follows. From (24) and (25) \ 2 0 and Y\j ¢ 1o, and it follows that
0 =\ = 1o. The eight output level choices of 1/16, 1/8, 1/4, 1/2, 1, 2, 4, and 2 are chosen for \, and
the logarithmic quantization rule is

“~{1og,\ |
=2 ol 1/16 <\ < 8
n n

N - t/tefor V< /1o and \' - 8 for \' > 8 (31)
n n n n

The same approach is used to code the 37.

If the same number of bits is allocated to each of the 8 choices, then each coefficient is allocated 3 bits
and the resulting overhead for coding all 32 statistical coefficients is (2)(3)/10 - 0.375 bits per pixel. How-
ever, since the transform tends to concentrate block energy in the lower index transform coefficients, the

n Obtained from (31) will tend to decrease with increasing index n. Thus, for each index n of \,, there are
some choices more likely to be selected than others. For example, \y is nearly always 4 or 8. The impli-
cation is that we can improve on the overhead of 0,375 bits per pixel for the 32 statistical coefficients by
using a variable word length code.




A Fano code was tried that uses code words of 1 to 7 bits for the eight choices, The code words in the
order of decreasing probability are 0, 1-0, 1-1-0, t-1-1-0, 1-1-4-1-0, 1-1-1-1-1-0, 1-1-1-1-1-1-0, and
1-1-1-1-1-1-1. The most probable % is coded 0, the second most probable is coded 1-0, and so on.
Because the sequence Xy « + « \y tends to be correlated, the order of probability for \, was set from Xn-l
forn-2,3 . . . 16 with the order fixed for \y. The rule used for setting the order of probability is given in
Table 1. The lowest overhead obtainable with this scheme is 0. 125 bits per pixel for all 32 coefficients.
There are other methods for quantizing the \} that might be tried, including differential pulse code modula-
tion on the sequence lug:\'l + + +log)\yp. one-dimensional transform coding of this sequence, and curve
fitting to a finite parameter model of this sequence.

Bit Allocation Rules for the Transform Coefficients

The number of bits f‘n. ¢ allocated to code X(n, f) is determined from the bit allocation rule. A noninteger
possible negative B, ;is computed and then set to the closest positive integer or zero:

B, . [NT[Bn' ,J for B, >0 and ﬁn' (= 0forB =0 (32)

The rules apgly to all X(n, f) with the exception of n, £ = 1,1. As discussed earlier, z(1,1) is error-free
coded using 1,1° 2 logpN + B, = 8 + Bg bits. For the X(n, f), if En. ¢ = 0, then X(n, f) = 0 is decoded.

The first allocation rule is called here ''local bit control' (LBC) and is used to allocate approximately the
same number of bits to each block. The rule is
N N
3 2 2 ~2 ~2
B s” B, /N" - (0.5/N Z 2 log,5 l] + 0.5 log,o (33)
=1 n=1
Note that B, ¢ = Br but, since ﬁn,l = 0 for By, ¢ < 0, then .‘.‘.l:fsn’ ¢ will be somewhat greater than Bp.
This rule tends to keep the allocations for the blocks about the sa "2, but results in block distortions that

differ from block to block reflecting their statistical variations.

The second allocation rule is called here ''global distortion control' (GDC) and is used to maintain approx-
imately the same block distortions for each block. This rule is

, 32
B, 4= 0.5 logz{un' (/D) (34)

Note that Z3B, ¢ = 0.5XXlog )Bé'l - O.SNllong. The bit allocation wili vary between blocks, reflecting the
differences inr\)lock qua.ntizea transform statistics.

Performance Evaluation

Performance Equations

The performance of the algorithm is evaluated using a normalized mean square error (MSE) criterion.
The MSE for the entire image is defined by
DST
MSE @ = (35)
where DST is the distortion per pixel and ENGY is the energy per pixel. The distortion per pixel is defined
by

el F 8 b (e i)
DST (b_(k,i) - b_(k,i)) (36)
N°M r=1i=1k=1 T i

where r is the block index out of M total blocks, by(k,i) is the input image, and Br(k. i) is the output image.
Since the transform is unitary, DST can be expressed in terms of the transform coefficients by

DST = —Zl— % g g:(z (n, f) - 2 (n.l))z (37)
N°M r=1é-1n=1 © 5

~

The energy per pixel is defined by

o PR
ENGY
N™M r=

Mz

_ (b (ki) - m)® (38)

1

—
i
-

k=1

where m is the image global sample mean.




1 M N N
m @ —— b (k,1) (39)
N“M rzl le kzl 3

Note from (35) and (38) that the MSE is computed here with the global sample mean extracted.

The bits per pixe. that is used to achieve the MSE is B, + Bg where By is the bits per pixel used to code
the transform coefficients and Bg is the bits per pixel used to code the transform statistics. The relation for
By is

{ M N N _
B, =emem 30N B - () (40)
A N°M S14514T1 !

In (40), ﬁ'k‘ ¢#(r) is the bit allocation for the n, f transform coefficient of block r. As discussed earlier,

f3|_ t(r) + B, bits and all other Bm ¢(r) follow from (32) and (33) or (34). The relation for Bg is
L - 2
B, = —— Z [blnck r bits used to code (‘") LN+ - «\._ and B/ - - -’ ] (41)
N"M £T1 s W ! N

Test Results

The algorithm is tested on two satellite weather images and a site image. Image specifications are given
in Table 2, and performance “-esults for MSE compared with the bits per pixel By + Bg are presented in
Table 3. Selected original, reconstructed, and difference images are shown in Figs. 2, 3, and 4.

The contribution to Bg as the result of coding the (©9% is log,K/256 bits per pixel, which is 0.019 for the
weather images (i.e., K=32. C 1.25) and 0.023 for the site “imagc (ive., K =164, C = 1.22). The con-
tribution to Bg is 0. 375 bits per pixel as the result of coding the \'s and 8’s without a variable word length
code. Simulated reductions were obtained using the Fano code of Table 1. For weather image 1, the con-
tribution to Bg was reduced to 0.285; for weather image 2, to 0.307; and for the site image, to 0.277.
These results are reflected in Table 3.

For a given bits per pixel, global distortion control provides a lower mean square error than local bit
control as may be seen by comparing the first and second cases for weather image 2 given in Table 3. A
characteristic of local bit control is that the difference image will have ""blocking'' reflecting the different
distortions on blocks with different statistics. This effect can be seen in the difference image shown in
Fig. 2 for weather image 1.

In Figs. 2, 3, and 4 the reconstructed images are, to the eye, replications of the originals. Thus, to
accentuate differences between the original and reconstructed images, an amplified difference image is
shown representing 30|b(k, i) - B(k, i)| with white corresponding to higher difference than black. Note that
the difference images in Figs. 3 and 4 have the pepper appearance that indicates the fairly uniform distortion
over the image, which is characteristic of global distortion control.

Conclusions
Al AL A

A transform coding algorithm has been developed based on a generalized correlation model of the image
blocks. The algorithm requires coding of the transform coefficients plus the overhead, which is the bits
per pixel required to code the transform statistics. The developed algorithm is characterized by a low mean
square error between original and reconstructed images for the bits per pixel allocated to code the transform
coefficients without excessive overhead. Among various possible schemes for coding the transform statis -
tics, an eight-level quantizer followed by a variable word length code was utilized. For all tests the re-
constructed images are very good, supporting the reasonableness of the product separable model for the
transform coefficient variances. The model for the transform coefficient variances is sufficiently general-
ized so that high frequency image structure can be reflected. Computation of the quantized transform co-
efficient variances prior to coding the transform coefficients permits control of the bit rate since the number
of bits allocated to each block is known prior to coding.
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Fig. 1. Basic structure of statistical transform coding.
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Fig. 2. Local bit control for weather image 1.
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Fig. 3. Global distortion control for weather image 2.
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Table 1, Bit Allocation Rule for Coding of Statistical Coefficients Using Fano Code
1 bit 2 bit 3 bit 4 bit I 5 bit 6 bit 7 bit ‘l 7 bit
e -— e ¢ e e '7-‘—~-T-»-~~»<~7~ — g -A-———T———— o
Xl | 8 4 6 2 1 ! 1/2 | 1/4 | 1/8 1/10
X, givenk -8 e e 1 8 S ! 1/8 | 1/16
i ‘ l i ‘ i
. \ given \ -4 2 e s g/ | 8 | tr4 | 148 | 16
n n-1 i ! |
g - - - 5 | ! |
X, givenX -2 1 g | 2 |t | ¢ | s o» 1/16
£ S | ; 4
: \n given )‘n-l s 1 1/2 1/4 1 1/8 1 2 | 1/16 : 4 ! 8
: M ogiven® =172 | /4 | 1/8 | w2 | 1/16 | T S i R
i A, given X - 1/4 1/8 | 1/16| 174 | 172 1 T 8
N givenX - 1/8 | /16| 1/8 | 1/4 | 1/2 1 2 4 8
A givenX = t/16 | t/t6 | 1/8 | 1/4 | /2 1 2 4 8
Table 2, Image Specifications
E & Bo Image No. of Global Sample Energy per
2 Bits / Pixel Dimensions Blocks (M) Mean(m) Pixel (ENGY)
* N Weather Image 1 6 480 %« 704 1320 30. 76 191,26
i Weather Image 2 6 480 x 704 1320 25,88 23.70
Site Image 10 512 %< 512 1024 306.00 7269.
Table 3. Performance Results
; l MSE % 100 | Bit Allocation
$ o’
[ BA BS BA + BS (%) Rule
Weather Image 1 | 0.187 | 0.304 | 0.491 1.47 GDC
i Bo= 6 0.827 0.304 1.131 0.50 GDC
5 1.575 0.304 1.879 0.23 L.BC
; Weather Image 2 0. 256 0.326 0.582 1.65 GDC
; Bo = 6 0.3006 0.326 0.632 1.82 LBC
£ 0.631 0.326 0.957 0.91 GDC
&
1
g Site Image 0.215 0.300 0.515 4.53 GDC
: BO =10 0.562 0.300 0.862 2.44 GDC
3 2.102 0.300 2.402 0.34 GDC

Original Bits/Pixel

=
u

(8]
BA = Bits/Pixel Transform Coefficients
: é Bs = Bits/Pixel Overhead for Transform Statistics with Fano Code

LBC = Local Bit Control

GDC = Global Distortion Control
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